
ARTEMIS: An Intrusion Detection System for
MQTT Attacks in Internet of Things

Ege Ciklabakkal
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

ciklabakkal.ege@metu.edu.tr

Ataberk Donmez
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

ataberk.donmez@metu.edu.tr

Mert Erdemir
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

mert.erdemir@metu.edu.tr

Emre Suren
Informatics Institute

Middle East Technical University
Ankara, Turkey

emre.suren@metu.edu.tr

Mert Kaan Yilmaz
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

kaan.yilmaz@metu.edu.tr

Pelin Angin
Department of Computer Engineering

Middle East Technical University
Ankara, Turkey

pangin@ceng.metu.edu.tr

Abstract—The Internet of Things (IoT) is now being used
increasingly in transportation, healthcare, agriculture, smart
home and city systems. IoT devices, the number of which is
expected to reach 25 billion all over the world by 2021, are
required to be deployed very fast, taking into account commercial
pressures. This results in a very important layer, i.e. security,
being either completely neglected or having significant shortcom-
ings. Since IoT has a heterogeneous structure, there is a need
for intrusion detection systems (IDSs) that take into account the
specifics of an IoT system architecture, including the computing
power limitations, variety of protocols and prevalence of zero-day
attacks. In this paper, we describe ARTEMIS, an IDS for IoT,
which processes data from IoT devices using machine learning
to detect deviations from the normal behavior of the system and
generates alerts in case of anomalies. We have implemented a
prototype of the system using IoT devices subscribed to topics
at an MQTT broker and provide experimental evaluation of the
system under MQTT-related attacks.

Index Terms—IoT, Intrusion Detection, MQTT

I. INTRODUCTION

The advances in and wide availability of networking in-
frastructures and smart devices in the last decade have given
rise to The Internet of Things (IoT) phenomenon, enabling
the connectivity of physical and virtual objects to create smart
environments. Although IoT systems are relatively new, IoT-
enabled devices have already created a large attack surface for
hackers to exploit. Notorious security incidents include a mas-
sive distributed denial of service (DDoS) attack1 launched by
hacking into thousands of security cameras, hackers remotely
taking control of a Jeep Cherokee2, the Stuxnet virus destroy-
ing a fifth of Iran’s nuclear centrifuges3, among others. Many
of the current IoT devices lack basic security mechanisms,
and there is a lack of standardization for IoT standards and
protocols, which creates security loopholes.

1https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
2https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
3https://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-

previous-thought-2013-11

This paper aims to contribute to the design of effective
intrusion detection approaches for IoT systems, where de-
vices communicate using the MQTT protocol. We propose an
intrusion detection system (IDS) performing anomaly-based
intrusion detection with machine learning (ML) algorithms to
create alerts when the observed behavior of the system deviates
significantly from its normal behavior learnt by the algorithms.

The main contributions of this paper are as follows:
• We describe a lightweight anomaly-based IDS for MQTT-

based IoT networks.
• We provide a comprehensive experimental evaluation of

the anomaly detection performances of six ML algorithms
for detection of simulated MQTT attacks using data
collected by the prototype IoT system developed.

• We provide a dataset consisting of packet captures gen-
erated by simulating attacks on the implemented IoT net-
work. The unavailability of such IoT-specific datasets in
the literature is a major problem for security researchers.

II. RELATED WORK

Intrusion detection in IoT has been a popular area of
research for the past few years, owing to the significant adverse
effects of cyber attacks on IoT systems. Kasinathan et al.
[1] adapted Suricata, a signature-based IDS to detect DoS
attacks in 6LoWPAN networks. Their system analyzes the
IDS alerts of channel interference rate and packet dropping
rate to confirm the attack along with reducing the false alarm
rate. Liu et al. [2] proposed a signature-based IDS that utilizes
Artificial Immune System (AIS) techniques. This approach is
not a suitable deployment for IoT networks containing low
capacity nodes due to the cost of attack signature storage and
running algorithms. Cho et al. [3] proposed an anomaly-based
detection scheme for botnets in 6LoWPAN sensor networks.
The solution monitors the network traffic and notifies when
unexpected changes in the computed averages for packet
length and number of connections are observed for any node.

Lee et al. [4] leveraged the regular energy consumption as a
parameter to detect anomaly behavior in low capacity 6LoW-
PAN networks. Summerville et al. [5] designed a deep-packet
inspection method for anomalies that is capable of running
on resource constrained IoT devices. They experimented with
two Internet-enabled devices and the false positive rates for
the worm propagation, tunneling, SQL code injection, and
directory traversal attack types were shown to be low. Pongle
and Chavan [6] designed three algorithms to detect wormhole
attacks in IoT networks. Although the system is suitable for
low resource IoT devices, the authors did not report the false
positive rates.

The main shortcoming of previous work is that they were
mostly not evaluated with datasets specific to IoT and/or IoT-
specific communication protocols and attacks. Closest to our
work is that of Alaiz-Moreton et al. [7], which utilized three
methods, Extreme Gradient Boosting (XGBoost), GRU Recur-
rent Neural Networks, and LSTM Recurrent Neural Networks,
for detecting 3 types of attacks, DoS, man-in-the-middle, and
an MQTT-specific intrusion. However, we consider different
ML algorithms and focus on detection of anomalies rather than
multi-class attack classification.

III. METHODOLOGY

A. System Architecture

The architecture of the IoT network and IDS we model in
this work is as shown in Fig. 1.

Fig. 1. System Architecture

The IoT system consists of various devices that share
data such as sensor readings using MQTT. There is a single
gateway device (a Raspberry Pi in the prototype) to which the
sensors connect and every message published is communicated
over this gateway. From the remote server, we capture packets
using tcpdump and ssh. By directly transferring the packets
to the server and completing the computationally expensive
tasks such as training and prediction here, we minimize the
processing done on the gateway device. We also present users
with a simple UI to monitor the system.

We train ML models (using Python Outlier Detection Li-
brary - PyOD [8]) to make predictions on each packet. For
generating alerts, we use the predict proba4 method of the

4PyOD library provides this method

prediction model. We use the formula below, in order to take
advantage of the outlier probabilities of the previous batches as
well, where mov avg is the moving average outlier probability,
prev mov avg is the moving average outlier probability for
the previous batch, avg is the outlier probability of the current
batch, and W0 is the weight. W0 essentially indicates how
much we value past data. In our experiments, we set it to 0.4.

mov avg = W0 ∗ prev mov avg + (1−W0) ∗ avg (1)

Alerts are generated based on the difference of the current
moving average and the previous moving average.

B. Data Collection

In the system prototype developed, we have a DHT11 sensor
connected to a Raspberry Pi, which sends temperature and
humidity data out. For diversity, we subscribe to some topics
in public MQTT test brokers such as test.mosquitto.org and
iot.eclipse.org. The Node-RED5 IoT programming tool is used
to set up connections between publish and subscribe nodes.

C. Feature Design

We use the information in the TCP, MQTT and IP layers
of packets. In addition to these features we also calculate,
for each packet, the average time between the 20 preceding
packets. A complete set of the 31 features used can be seen
in Table I.

TABLE I
FEATURE SET AND DESCRIPTIONS

No. Name Layer Description

1 packet length - Total packet length
2 src ip IP IP address of the source
3 dst ip IP IP address of the destination
4 ip len IP Length of the IP layer
5 ip df flag IP Don’t fragment flag
6 ip mf flag IP More fragment flag
7 ip rb flag IP Reserved bit flag
8 ttl IP Time to live
9 tcp w size TCP TCP window size
10 tcp len TCP Length of the TCP layer
11 tcp pdu size TCP PDU size
12 tcp ack flag TCP Acknowledgement flag
13 tcp cwr flag TCP Congestion Window Reduced flag
14 tcp ecn flag TCP ECN-Echo flag
15 tcp fin flag TCP Fin flag
16 tcp ns flag TCP NS flag
17 tcp push flag TCP Push flag
18 tcp res flag TCP Reserved flag
19 tcp reset flag TCP Reset flag
20 tcp syn flag TCP Synchronize flag
21 tcp urg flag TCP Urgent flag
22 tcp src port TCP Port number of the source
23 tcp dst port TCP Port number of the destination
24 tcp tdelta TCP Time elapsed since the last pacekt
25 l20 avg TCP Average tcp delta of last 20 packets
26 mqtt header MQTT MQTT header flags
27 mqtt msg MQTT MQTT message (payload)
28 mqtt len MQTT Length of the MQTT message
29 mqtt topic len MQTT Length of the MQTT topic
30 mqtt msg type MQTT Type of the message
31 mqtt qos lvl MQTT MQTT Quality of Servic Level

IV. EVALUATION

Using the developed system prototype, we performed ex-
periments to evaluate the performance of the following ML
algorithms: Autoencoder, Single-Objective Generative Adver-
sarial Active Learning (SO GAAL), Random Forest, Isolation

5https://nodered.org/

test.mosquitto.org
iot.eclipse.org

Forest, One-Class Support Vector Machines (OCSVM), and K-
means Clustering. In the captures that contain an attack, the
MQTT malaria tool6 was used to send messages containing
fuzzy payloads as fast as the tool allows. In the clean version
of the dataset, there are around 180k packets of which 100k
are MQTT packets and the rest are mostly TCP packets of
the related MQTT packets.7 While we used the autoencoder,
SO GAAL, Random Forest and k-means methods to train a
model with both benign and attack data, OCSVM and Isolation
Forest were used to train a model with only benign data.

For autoencoder, we did not change the default parameters
of the library. Random forest already achieved good results
with the default parameters, therefore only the n estimators
parameter was changed to 100. We used the PyOD imple-
mentation of OCSVM and the SelectKBest method was used
to select the best 24 features among the 31. We created our
clustering models with the k-means and Brich methods from
the Python sklearn library8. We have 2 clusters, inlier and
outlier. For Brich, the branching threshold was set to 0.2.

Both the training and test sets of the attack dataset contain
normal behaviour (benign) and fuzzing attack packets. Fur-
thermore, JSON objects require special handling as they are
not a primitive data type. Thus, we created filtered versions
of the mentioned datasets, which do not include packets
with JSON objects in their payloads. The distribution of the
number of packets in the datasets is summarized in Table II.
We evaluated the performances of the methods with ROC

TABLE II
PACKET DISTRIBUTIONS IN THE DATASETS

Benign
Without JSON

Dataset

Attack
Without JSON

Dataset

Benign
With JSON

Dataset

Attack
With JSON

Dataset
of Benign Packets 58748 232941 102738 286985
of Attack Packets 0 135123 0 135123
Total # of Packets 58748 368064 102738 422108

AUC Scores (Table III) and Accuracy Scores (Table IV). The
experiments were performed in four ways. The first and the
second experiments use 80% of the benign dataset as the
training set and 20% of the attack dataset as the test set for the
models. While the second set of experiments used the packets
with JSON objects in the payloads, the first did not use them.
These experiments involved one-class algorithms (OCSVM
and Isolation Forest). The third and the fourth experiments
used 80% of the attack dataset as the training set and 20%
of the attack dataset as the test set for the models. While
the fourth set of experiments used the packets with JSON
objects in the payloads, the third set of experiments did not use
them.The third and fourth sets of experiments involved multi-
class algorithms (Autoencoder, SO GAAL, Random Forest
and k-means). For the Tables III and IV, the columns represent
these stages, where ‘-’ indicates that the corresponding test was
not applied for that method.

6https://github.com/etactica/mqtt-malaria
7The full dataset containing raw packet captures is available at

https://drive.google.com/open?id=1bNj1lNjU0Q3YxzhutMFCpSytPX8jFxC-
8https://scikit-learn.org/stable/modules/clustering.html

TABLE III
ROC AUC SCORES OF THE ML METHODS

Benign Train
-

Attack Test
Without JSON

Benign Train
-

Attack Test
With JSON

Attack Train
-

Attack Test
Without JSON

Attack Train
-

Attack Test
With JSON

Autoencoder - - 0.4106 0.3788
SO GAAL - - 0.8924 0.8728

Random Forest - - 1.0 0.8816
K-Means - - 1.0 0.8816
OCSVM 0.9998 0.9998 - -

Isolation Forest 0.8326 0.5 - -

TABLE IV
ACCURACY SCORES OF THE ML METHODS

Benign Train
-

Attack Test
Without JSON

Benign Train
-

Attack Test
With JSON

Attack Train
-

Attack Test
Without JSON

Attack Train
-

Attack Test
With JSON

Autoencoder - - 0.5945 0.6378
SO GAAL - - 0.8415 0.7860

Random Forest - - 1.0 0.8007
K-Means - - 1.0 0.8007
OCSVM 0.9998 0.9998 - -

Isolation Forest 0.7534 0.8417 - -

V. CONCLUSION

In this paper, we described the design and implementation of
a lightweight anomaly-based IDS for IoT networks, focusing
on attacks on MQTT. We generated a dataset that contains
attacks for MQTT and provided it for the use of the security
community. Our IDS integrates various ML techniques to
classify IoT network behavior as normal or anomalous. We
provided a comparative analysis of the performances of the k-
means, SO GAAL, OCSVM, Random Forest, Isolation Forest
and autoencoder models for the anomaly detection task. The
experiment results suggest that ML-based intrusion detection
in MQTT-based IoT networks can achieve impressive results
even when not trained with previously known attacks.

REFERENCES

[1] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-
service detection in 6lowpan based internet of things,” in 2013 IEEE 9th
international conference on wireless and mobile computing, networking
and communications (WiMob), pp. 600–607, IEEE, 2013.

[2] C. Liu, J. Yang, R. Chen, Y. Zhang, and J. Zeng, “Research on immunity-
based intrusion detection technology for the internet of things,” in
2011 Seventh International Conference on Natural Computation, vol. 1,
pp. 212–216, IEEE, 2011.

[3] E. J. Cho, J. H. Kim, and C. S. Hong, “Attack model and detection
scheme for botnet on 6lowpan,” in Asia-Pacific Network Operations and
Management Symposium, pp. 515–518, Springer, 2009.

[4] T.-H. Lee, C.-H. Wen, L.-H. Chang, H.-S. Chiang, and M.-C. Hsieh,
“A lightweight intrusion detection scheme based on energy consumption
analysis in 6lowpan,” in Advanced Technologies, Embedded and Multi-
media for Human-centric Computing, pp. 1205–1213, Springer, 2014.

[5] D. H. Summerville, K. M. Zach, and Y. Chen, “Ultra-lightweight deep
packet anomaly detection for internet of things devices,” in 2015 IEEE
34th International Performance Computing and Communications Confer-
ence (IPCCC), pp. 1–8, IEEE, 2015.

[6] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack
detection in internet of things,” International Journal of Computer Ap-
plications, vol. 121, no. 9, 2015.

[7] H. Alaiz-Moreton, J. Aveleira-Mata, J. Ondicol-Garcia, A. L. Muñoz-
Castañeda, I. Garcı́a, and C. Benavides, “Multiclass classification proce-
dure for detecting attacks on mqtt-iot protocol,” Complexity, vol. 2019,
pp. 1–12, 2019.

[8] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable
outlier detection,” arXiv preprint arXiv:1901.01588, 2019.

	Introduction
	Related Work
	Methodology
	System Architecture
	Data Collection
	Feature Design

	Evaluation
	Conclusion
	References

